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Local and global stability of a piecewise
linear oscillator

By M. Krneczkal, E. KREUZER?> AND W. SCHIEHLEN!

Unstitut B fiir Mechanik, Universitit Stuttgart, Pfaffenwaldring 9,
D-7000 Stuttgart 80, (ierminy
® Meerestechnik I, Universitit Hamburg—Harburg, Eifendorfer Strafe 42,
D-2100 Hamburg 90, Germany

Machines and mechanisms with moving parts, subjected to periodic excitation, often
show unexpected dynamic behaviour, and impacts due to their connection clearances
may occur. The most simple mathematical model is a one degree-of-freedom
nonlinear oscillator governed by a piecewise linear symmetric function to describe
the restoring force. The system’s response, which can be quite rich and complicated,
is described in detail. Modern methods for a combined analytical and numerical
analysis are used to study local and global bifurcation conditions, coexisting
solutions and their associated domains of attraction.
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1. Introduction

Dynamical systems theory has predominantly focused on smooth differentiable
systems. By relying on such systems a considerable body of knowledge has been
developed, and topological methods have given much insight into the dynamics of the
overall behaviour. But discontinuous dynamical systems are common in engineering
and their study has applications in a wide range of technical problems. In particular
play or backlash is an omnipresent reality in machinery. Because of production
tolerances, joints of mechanical systems in general are affected by play or connection
clearances that may enlarge in case of wear. The resulting undesired motions often
lead to (a) increasing stress and strain of parts, (b) reduced machine reliability and
life, (¢) loss of precision and stability and (d) undesirable noise effecting the
environment.

Eliminating connection clearances by sophisticated design can, however, be very
expensive and is sometimes even impossible. Increasing demands on engineering
systems require, therefore, improved models and more sophisticated methods for
selecting system parameters so that undesired motions could be minimised or
eliminated. Such models include nonlinear and even non-differentiable elements. As
the most simple prototype to analyse the dynamics of such kind of systems we
consider a simple single degree-of-freedom mechanical oscillator with a piecewise
linear, symmetric restoring force subjected to periodic excitation caused by an
unbalanced rotor (figure 1). This can be compared with the asymmetric impact
oscillator studied by Thompson & Stewart (1986, ch. 14, 15) and Shaw & Holmes
(1983 a—c).

The system is very simple, but it has a very complex bifurcation structure leading
to irregular, chaotic motions and for certain parameter ranges it may have a variety
of coexisting attracting motions (Kleczka 1991). The equations of motion include six
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Figure 1. Mechanical model and piecewise linear symmetric spring characteristic.

physical parameters: mass M, play £, coefficients of spring ' and damper D,
amplitude 4 and frequency £ of excitation. Normalization leads to the non-
dimensionalized equations of motion

¥4 2dz+ k(x) = a cost, (1)
containing only three generalized parameters of spring, damper and amplitude of
excitation

c=0/MQ* d=1D/MQ, a=A/EMQ* (2)
The normalized piecewise linear function of restoring force is
cle—1) if xz>1,
k(x) =10 it —l<ax<l, (3)
cle+1) if x<1.

2. Extended state space

Methods for the analysis of nonlinear dynamic systems usually require a
representation of the system as a set of autonomous, first-order ordinary differential
equations. To apply these methods, the given single, second-order non-autonomous
system (1) has to be transformed appropriately. To preserve the property of non-
crossing trajectories the system has to be rewritten as an autonomous system by
introducing time as an additional state variable (figure 2a). In the case of a periodic
time dependence, a common way to transfer (1) to the desired form is to establish an
extended, cylindrical state space,

x = (x,y=4a, 0 =tmod2n)eR*x S, St=]0,2n), (4)

where x represents the position, y gives the velocity and 6 stands for the circular
coordinate and is to be interpreted as the phase angle of excitation. The resulting set
of first order autonomous differential equations is given by

yl=|—2dy—k(x)+acosb | (5)
0 1

The subspaces, where the piecewise linear function is not smooth,
St ={(x,y,0)e R*xS|x = + 1.0},
St ={(x,y,0)eR*xS|x = —1.0},
are called switching surfaces. Intersecting one of these surfaces, the system’s
dynamics changes non-smoothly from one linear behaviour to another. Although the

Phil. Trans. R. Soc. Lond. A (1992)
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Stability of a piecewise linear oscillator 535

system is almost everywhere linear, the global behaviour is, of course, nonlinear.
Figure 2 shows two different representations of the extended state space including
the switching surfaces.

There exist no global analytical solutions in closed form and therefore the system
has to be integrated numerically. Instead of studying the continuous time system or
flow one can obtain considerably more insight into the dynamics by analysing an
associated discrete time system or map. This is especially true for the analysis of
orbital stability of periodic solutions.

3. Poincaré map

An essential simplification and reduction of the analysis of (5) can be achieved by
discretization of the time-continuous description by means of a Poincaré surface of
section. One major problem is to set up a proper Poincaré surface of section in state
space. There are two natural ways to discretize the flow of the set of ordinary
differential equations for the system under consideration: (i) the stroboscopic map
which is obtained by measuring the position and the velocity at a fixed value of the
phase angle 6; (ii) one of the switching surfaces which maps the phase angle and the
velocity at an intersection onto the phase angle and the velocity of the next
intersection. For periodically excited systems it is common to establish a Poincaré
surface of section I" at some arbitrary but fixed phase angle 0,:

1= {(x,y,0)|0 = 0. (7)

In the following the surface of section is located at ¢, = 0. Each trajectory crosses
I transversally once per period of excitation. The main advantage of the stroboscopic
map or Poincaré surface of section I” is that it is globally transversal to the flow of
(5).

On the other hand, if a system is non-smooth on some surface in state space, it may
be appropriate to watch the system’s state crossing this surface, i.e. to use one of the
switching surfaces as Poincaré surface of section. In the given case, switching
surfaces are not globally transversal to the flow : for y > 0 trajectories go to the right,
for y < 0 trajectories go to the left and for ¥ = 0 trajectories touch the switching
surfaces tangentially, i.e. non-transversally. As Poincaré surfaces of section have to
be transversal, only parts of switching surfaces are suitable. One set of possible
Poincaré surfaces of section is:

_{w/, O)|x=+1.0,y <0} (=

22 (2, y,0)|x = —1.0,y <0},
—{x y,0)|x=—1.0,y > 0}.
2V ={(x,y,0)|x = +1.0,y > 0}.

(8)

Because the system is perfectly symmetric, all of the four Poincaré surfaces of section
214 are equivalent. For that reason only 2 = 2 needs to be treated without loss of
generality.

In practice, switching points have to be determined by an iterative procedure.
These points can be used as Poincaré points without further computational expense.
This is a minor advantage compared to the Poincaré surface of section I', where the
system’s state has to be determined passing the phase angle 6,. The main
disadvantage of the Poincaré surface of section X' is the non-global transversality. It
leads to discontinuities of the respective Poincaré map and consequently to severe

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. Coexisting, pairwise point-symmetric solutions. I'-Poincaré points, o: X-Poincaré
points, A: for ¢ = 12.0,d = 0.15, a = 10.
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numerical and theoretical problems. This remarkable fact has not received very
much attention in the literature, although often non-global Poincaré surfaces of
section are used disregarding the related problems. Effects of discontinuities due to
non-global Poincaré surfaces of section may be (z) problems in interpreting the
period of an orbit, (b) problems in calculating invariant manifolds and (¢) anomalous
bifurcations, e.g. fictitious bifurcation from a period three (P3) solution to a solution
of period four (P4).

The first difficulty can be demonstrated easily by a simple example. For the set of
parameter values (¢ = 12.0,d = 0.15, @« = 10.0) two solutions of period 3 X 27 coexist
(figure 3).

In the globally transversal Poincaré section I” these solutions are represented as a
pair of P3 solutions. This is not the case for the non-global Poincaré section 2. The
left solution (figure 3a) will be represented as a P3 solution whereas the corresponding
right solution (figure 3b) comes up as a P4 solution. Although both solutions are
point-symmetric to each other with respect to the origin and of period 3 x 27 in the
continuous case, discretization by means of a Poincaré section X2 that is not globally
transverse, leads to different periodicity and loss of symmetry properties. The
discontinuity of the adjoint Poincaré map leading to this problem is made apparent
by simulation in the neighbourhood of the discontinuity. Figure 4 shows trajectories
starting in the Poincaré surface of section X with fixed y-coordinate and slightly
varying phase angle 6.

Figure 4a gives an overview on the situation close to the discontinuity. Figure 45
is a detail of a simulation immediately before the jump. The loop does not touch the
Poincaré section. The next simulation, figure 4¢, reflects the critical situation. The
loop seems to touch the Poincaré section and two image points are possible,
depending on whether the loop crosses the Poincaré section or not. Finally, further

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 4. Trajectories in the neighbourhood of a discontinuity of the Poincaré map P;. (a)
Complete trajectory, (b) immediately before the discontinuity, (¢) at the discontinuity, (d)
immediately after the discontinuity.

variation of the phase angle makes the situation clear: the loop crosses the Poincaré
section producing a ‘new’ image point, without continuous connection to the old one.
The discontinuity occurs in general in the case of a Poincaré section, that is not
globally transverse.

4. Global analysis

The global analysis of nonlinear dynamical systems in general requires large-scale
numerical investigations. Global stability analysis with respect to initial conditions
leads to the problem of the determination of long-term behaviour, i.e. attractors, and
their domains of attraction.

The most efficient approach to such analysis involves discretization of state and
time, the so-called cell mapping method (Hsu 1981 ; Kreuzer 1987). Analysis of the
coexistence situation (figure 3) reveals an intertwining of the respective domains of
attraction, which is an indication that the system is sensitive with respect to small
changes of initial conditions in the sense that arbitrarily close starting points
eventually produce large changes in the long-term behaviour (figure 5).

Individual trajectories are therefore not reproducible in the presence of physical or
numerical noise and the emphasis is placed, rather, on the overall features of
ensembles of trajectories. Fixing an initial condition in the finely intertwined régime
to some limited precision may lead to unpredictable long-term behaviour; it is
impossible to determine which of the two possible P3 solutions will be approached in
the long run. Sensitive dependence on initial conditions is a typical property of
chaotic dynamics.

A global analysis in parameter space can be carried out with a calculation of
Lyapunov exponents and bifurcation diagrams. Lines in bifurcation diagrams
represent periodic solutions changing under variation of the control parameter

Phil. Trans. R. Soc. Lond. A (1992)
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Tigure 6. Bifurcation diagram and Lyapunov exponent ¢, for variation of the stiffness ratio c.

steadily or, in case of bifurcation, unsteadily. The corresponding Lyapunov exponent
is negative, indicating stable, convergent long-term behaviour. Chaotic dynamics
produces non-periodic sequences of points in the bifurcation diagram leading to wide,
grey-patterned structures. The corresponding largest Liyapunov exponent is positive,
indicating divergent, unpredictable dynamics. The analysis for variation of the
stiffness ratio ¢ is shown in figure 6.

In parameter space, the P3 solution (Yorke & Li 1975) is just a periodic window
within the chaotic régime.

4.1. Homoclinic structures and horseshoe dynamics
Chaotic dynamics is a phenomenon of systems that obey deterministic laws, but
whose behaviour is unpredictable. But how can this happen ? Determinism means:
identical initial conditions lead to identical results. In the classical sense determinism
is equivalent to predictability. But in the classical sense determinism has been
considered only in the sirong sense, meaning nearly identical initial conditions lead

Phil. Trans. B. Soc. Lond. A (1992)
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emergence of homoclinic structure chaotic attractor
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Figure 7. Emergence of homoclinic points and the respective chaotic attractor.

to nearly identical results. Chaotic dynamics is deterministic, but not strongly
deterministic. Chaotic systems react sensitively to each variation of initial conditions.
In the real world initial conditions are never precisely determined and can only be
fixed within a certain level of uncertainty. Inherent divergence of chaotic systems
produces, in time, diverging uncertainty up to a point where the information about
the state of the system, given at some initial time, has become worthless: knowing
the initial conditions, after some time, the actual state has become unpredictable.
The most illustrative prototype of such behaviour is the Smale horseshoe map. It
can be shown that Poincaré maps generating homoclinic structures are locally topo-
logically equivalent to the Smale horseshoe map. Homoclinic structures emerge when
stable and unstable invariant manifolds of fixed points of saddle type intersect
transversally. In this case, the map under consideration has locally all prototypical
chaotic properties of the horseshoe map: (a) existence of a countable infinite number
of periodic orbits of saddle type; (b) existence of an uncountable infinite number of
non-periodic orbits; (c) existence of a dense orbit; and (d) sensitive dependence on
initial conditions.

For the backlash oscillator under consideration an unstable, saddle type,
symmetric periodic solution plays the decisive role; its stable and unstable invariant
manifolds intersect, leading to homoclinic structures with significant influence on the
dynamics of the system (figure 7).

Homoclinic structures and horseshoes generate chaotic behaviour, but they do not
guarantee asymptotic, long-term chaotic motions. The invariant set of the horseshoe
map is not attractive; in contrast it is unstable. In general it is not possible to prove
the existence of a chaotic attractor. In the given case (figure 7) a chaotic attractor
seems to correspond to the unstable invariant manifold containing the chaotic
horseshoe set. Furthermore, in this case the emergence of homoclinic points coincides
with the emergence of a chaotic attractor. As already mentioned this is not true in
general. As the global topological structure of the system changes qualitatively, the
system undergoes a global bifurcation.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 8. Magnification of the bifurcation diagram of figure 6 in the P3 range.
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Figure 9. Backlash oscillator approaching an exterior crisis.

Global bifurcations are not smooth. Consequently, the resulting changes of the
dynamics are not smooth, and often the system jumps, collapses or explodes: in other
words its behaviour changes drastically. The different terms used to describe such
behaviour reflect this: catastrophe, explosion, crisis, etc. We now focus on crisis
phenomena, leading to sudden unexpected changes of the chaotic dynamics.

4.2. Crisis phenomena

Looking at the bifurcation diagram (figure 6) one realizes that there are sudden
disappearances and sudden blow-ups of the chaotic attractor. A magnification of the
P3 window (figure 8) makes this behaviour clearly visible.

Following Grebogi et al. (1983), one distinguishes two different classes of crisis
phenomena: (a) interior crises, producing blow-ups within the chaotic range; (b)
exterior crises, leading to sudden disappearances of chaotic attractors.

An exterior crisis occurs at a parameter value ¢ ~ 8.4. The chaotic attractor
vanishes, because it collides with an unstable periodic solution. Simultaneously, the
separatrix, dividing the domains of attraction of the coexisting chaotic and the P3
solutions, touches the chaotic attractor and induces loss regions within the former
attractor leading to a global loss of attractivity of the chaotic set. Figure 9 shows how
basin boundary and unstable periodic points approach the chaotic attractor and
finally destroy it by an exterior crisis.

An interior crisis can be observed at a parameter value of ¢ & 9.17. At this point
the three piece chaotic attractor suddenly blows up resulting in a one piece chaotic
attractor. This is not only an enlargement of the chaotic dynamics, but also a
qualitative change: the interior crisis marks the end of the realm of period three. The
final stage of chaotically disturbed P3 behaviour, reflected by a three piece chaotic
attractor is definitely terminated (figure 10).

Phil. Trans. R. Soc. Lond. A (1992)
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¢=915 ¢c=919

1 PEER MK

Figure 10. Cell mapping results of an interior crisis.

It is an interesting result that both the establishment and termination of the
period three intermezzo is triggered by the same unstable P3 solution (Kleczka ef al.
1990a).

5. Local stability analysis

The basic foundation of the local stability analysis of nonlinear dynamical systems
with respect to a vector of control parameters u is the classical bifurcation theory.
The bifurcation theory applies to continuous systems given as a set of ordinary,
autonomous differential equations

X =flx, n) 9)
and to discrete systems given as a map
X1 = Plxy, o). (10)

The prescribed steps of the analysis include (Troger & Steindl 1991) the following.

1. Determination of the bifurcation parameter value u*, where the stability of the
solution is critical (i.e. not determined by linear analysis).

2. Reduction to the bifurcation system by elimination of non-critical state
variables.

3. Transformation to normal form and identification of resonance terms governing
the system’s dynamics.

4. Sensitivity analysis with respect to imperfections through a universal unfolding.

5. Investigation of robustness with respect to large scale parameter variations.

In the continuous case, stability properties of stationary solutions X = 0 can be
determined. The same procedure can not be applied directly to periodic solutions of
differential equations. In terms of a Poincaré map, the problem of studying the
stability of a periodic solution is reduced to the problem of stability of a fixed point
of the map as was mentioned above. But bifurcation analysis of maps relies on
explicitly given mapping equations including symbolic control parameters. Un-
fortunately, there exist no general methods applicable to arbitrary differential
equations for constructing the associated Poincaré map analytically. It will be shown
how to overcome this difficulty by using a computer aided symbolic-numeric
procedure generating a parametrized power series approximation of the Poincaré
map.

The classical bifurcation analysis as outlined above can be built upon this
approximation. The Taylor series approximation turns out to be a stable foundation,
allowing a general bifurcation analysis of oscillatory engineering systems, such as the
backlash oscillator.

Phil. Trans. R. Soc. Lond. A (1992) oo
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periodic
reference
solution

x,(t,£=0)

X1

Figure 11. Poincaré map: periodic reference solution and its neighbourhood.

5.1. Local Taylor approximation of the Poincaré map

The Poincaré map can be determined only by numerical integration of the
underlying continuous system. A local approximation of the Poincaré map in the
neighbourhood of a fixed point can be developed starting from a periodic reference
solution, figure 11.

If initial conditions in the Poincaré section are described by a vector &, the
reference solution of period 7' fulfils

x(t=0,&=0)=x(T,0) = x*, (11)
and for the respective Poincaré map we have
PE=0)=0. (12)

A local approximation of the Poincaré map, G(£), can be given as Taylor series
expansion

G(&) = PEAPHEE+IPEEE ... +1/RIPPIE, .. &, (13)
where {&, ..., &} denotes the outer product. If x(¢,&) describes the solution of
x=flx), x(t=0)=x*+¢, (14)
the Poincaré map is defined by
PE) = x(T,&)—x*. (15)
The unknown jacobian P’ can be expressed as
, , ox(T, ox (¢,
P :P(T,O)=—(agézé=0= a(«:é) 21%. (16)
The connection to the system’s differential equation
X = flx) (17)

Phil. Trans. R. Soc. Lond. A (1992)
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Table 1. Number of differential equations

P n=2 n=3 n=4 n=>5 n=6 n=T7 n=38
2 14 39 84 155 258 399 584
3 30 120 340 780 1554 2800 4650
4 62 363 1364 3905 9330 19607 37448

is made by differentiation with respect to &:

d (ax(t, é)) _Afix(t.8)) _ Afx) (ax (t,é)) . (18)
de\ o¢ & ox \ o )

For an n-dimensional dynamical system this is a system of nxn first-order
differential equations. With the initial conditions

1 0
P/(tzo,gzo)zwiéﬁgz[ ] )
0 L’

numerical integration up to t = 7' leads to
P=Pit=T_E=0)=(0x/0&)(t=T,E). .- (20)

Further derivatives of the system’s differential equation (17) supply ordinary
differential equations for P”, P”, ....

A more compact formulation to derive the equations for the sought-after terms is
given in index notation. If we define

o;=00/0, e;=200/0x;, (21)
first-order terms are
& 5= fi7
Application of the chain rule yields
i'i,f =fi, a%a, §- (22)
For second-order terms, equation (22) has to be differentiated again with respect

to gis
xz,flé = (fi,axa,]’)lé =fi,alf: xa,f-'_fi,uxu,flé

=fz’,abxb,IExa,f_Ffi,axa,f)E‘ (23)

The next steps can be done equivalently. For third-order terms, the result is

Xy i = fi, ave Xe, { Ty, xa,f_'_fi, ab Ly, Iél‘xa,f_'_fi, ab Xy, i Lo, fi

i a0 o, 1%, 5+ i, 0 Ca, i (24)
The only non-vanishing initial conditions are
2 7 (t=0) =0y (25)

An important point is that this systematic index formulation can be fully
automated using computer algebra. A MAPLE-program (Haack 1990) generates the
complete set of differential equations (17), (22), (23), (24) up to an approximation
order of p = 3 for systems of arbitrary dimension n. Table 1 gives the correlation
between approximation order p, system’s dimension » and the number of coupled
differential equations to be derived and solved.

Phil. Trans. R. Soc. Lond. A (1992)
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An approximation of the Poincaré map is not very useful if the influence of
parameters cannot be studied. Therefore, parameters have to be included in a
symbolic way. This is possible by a simple extension of the state space. The control
parameters y, under variation can be interpreted as state variables

x=f(x.u), a=0. (26)

Now bifurcations with respect to parameter fluctuations can be studied generating a
local Taylor series approximation of the Poincaré map of the extended system (26).
More details are given in Kleczka et al. (19900).

It is possible to apply the outlined procedure to the given piecewise linear
oscillator without considering the special structure of the restoring force (3). But the
result is wrong. Only the linear part of the local approximation is correct. Higher
order terms with respect to state variables vanish, as the system behaves like a
linear, time-variant system. The piecewise linear system changes at switching points,
defined by the periodic reference trajectory. The nonlinearity of the system consists
of the state dependence of the switching points. The variation of switching points
with respect to variations of the solution are not taken into account. The only way
to cover the nonlinear behaviour within the presented scheme is to approximate the
piecewise linear system by a closed form nonlinear system. Defining a function

h(x; 2y, ¢,) = 2+ 1/marctan [c; (x —x,)], (27)

the piecewise linear system (4) can be approximated by

& y
—2dy—c(x;—1) 3+ 1/marctan [c, (¥, — 1)])
=| —c(x,+1)E+1/marctan[c,(—x,—1)])+acost |. (28)
¢ 0
d 0

Driving ¢, 00, the closed form nonlinear system asymptotically approaches the
piecewise linear system and the coefficients describing the approximation asymp-
totically approach the coefficients of the correct, nonlinear approximation of the
piecewise linear system.

5.2. Bifurcation analysis

Having gained a proper nonlinear approximation of the piecewise linear system,
the bifurcation analysis is standard. In particular for such a simple, low-dimensional
system only a few types of bifurcations are possible: bifurcations, where one real
eigenvalue of the linearized system crosses the unit circle. Hopf bifurcations and
higher order degenerate cases are impossible and normal form transformation is not
necessary. After the critical parameter has been determined by an iterative
procedure, the critical system has to be reduced to the bifurcation system, which is
in this special case a scalar difference equation, describing the dynamics on the centre
manifold. This equation encloses all relevant information about the type of stability
in the critical case.

The method used to reduce the system is the centre manifold formalism. The
centre manifold formalism relies on power series expansions of the given equation
and generates a power series expansion of the bifurcation system. It is important to
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note that the procedure can be automated completely; again taking advantage of
computer algebra systems (Rand & Armbruster 1987; Kleczka 1989). For the
analysis of the pitchfork bifurcation (¢ & 4.485) the procedure delivers an equation
including terms up to order three

Xy = 2,—0.0223. (29)

The coefficient of the linear term is equal to plus one, the coefficient of the quadratic
term vanishes and the coefficient of the cubic term is negative; the critical system is
stable and equation (29) represents a stable pitchfork bifurcation. Beyond the
bifurcation point the previous stable point symmetric P1 solution becomes unstable
and two stable pairwise point symmetric P1 solutions emerge.

Further increase of the spring parameter value leads to a pemod doubling flip
bifurcation. The corresponding bifurcation system for (c & 7.23) is

Tpsy = —a,—0.245523 —0.0168 2}, (30)

where the coefficient @, = — 1 indicates alternating behaviour that is typical for flip
bifurcations. The original solution becomes unstable and no other stable P1 solution
appears. Instead, a solution of double period is generated. The stability of the double
mapping

Xppn = 2, —0.087 23 (31)

is guaranteed by the negative coefficient of the cubic term. Consequently, the single
mapping (30) undergoes a supercritical flip bifurcation producing a stable solution of
double periodicity.

6. Conclusions

A periodically forced one degree-of-freedom oscillator with piecewise linear
symmetric restoring force has been studied. In contrast to the analysis of linear
systems the analysis of nonlinear systems comprises local and global properties.
Whereas a simple local stability analysis, i.e. solution of a linear eigenvalue problem,
suffices to determine the global behaviour of linear systems, nonlinear systems
require a careful local analysis plus additional global investigations. This task is
significantly more difficult than a linear analysis. The related problems are by no
means solved. To study oscillatory behaviour and bifurcation structures the
continuous system has been discretized by Poincaré maps. The interpretation of
periodic orbits of the map depends on the choice of the surface of section. The global
analysis requires in general large scale numerical simulations, e.g. the determination
of asymptotic solutions and their domains of attraction and the verification of
homoclinic structures. The local stability analysis is based upon an approximation of
the Poincaré map including system parameters in a symbolic way. A way to master
local and global stability analysis in general is visible. The way is a computer aided
numeric-symbolic approach. High-performance numerical computers (such as vector
and parallel processors on the one side and analytical machines carrying out symbolic
formalisms by means of computer algebra on the other) provide powerful basic
methods to overcome problems of nonlinear dynamics in a systematic, straight-
forward manner. The fundamental steps have been outlined in this paper for a simple
example. In principle, this procedure is applicable to more complex engineering
systems; including, for example, those found in gear boxes (Pfeiffer 1992; Weidner
& Lechner 1990).

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

OF

Downloaded from rsta.royalsocietypublishing.org

546 M. Kleczka, E. Kreuzer and W. Schiehlen

References
Grebogi, C., Ott, E. & Yorke, J. 1983 Crises, sudden changes in chaotic attractors, and transient
chaos. Physica D7, 181-200.

Haack, C. 1990 Rechnergestiitzte Verfahren zur Analyse nichtlinearer dynamischer Probleme.
Diplomarbeit DIPL-28, Universitidt Stuttgart.

Hsu, C. 8. 1981 A Generalized theory of cell-to-cell mapping for nonlinear dynamical systems.
J. appl. Mech. 48, 634-642.

Kleczka, M. 1991 Methoden zur Verzweigungsanalyse mit Anwendung auf einen Spielschwinger.
Fortschr.-Ber. VDI Reihe 11 no. 153. Diisseldorf: VDI-Verlag.

Kleczka, M., Kreuzer, E. & Wilmers, Ch. 1990a Crises in mechanical systems. In Proc. IUTAM
Symp. on Nonlinear Dynamics in Engineering Systems W. Schiehlen, pp. 141-148. Berlin:
Springer.

Kleczka, M., Kleczka, W. & Kreuzer, E. 19905 Bifurcation analysis: a combined numerical and
analytical approach. In Proc. NATO Adv. Res. Workshop on Continuation and Bifurcations:
Numerical Technigue and Applications D. Roose, B. de Dier, A. Spence, pp. 123-137. Dordrecht:
Kluwer Academic Publishers, pp. 123-137.

Kleczka, W. 1989 Einsatz von Computer-Algebra zur Analyse nichtlinearer dynamischer
Probleme. Studienarbeit STUD-50, Universitét Stuttgart.

Kreuzer, E. 1987 Numerische Untersuchung nichtlinearer dynamischer Systeme. Berlin: Springer.

Pfeiffer, ¥. 1992 Dynamical systems with time-varying or unsteady structure. Z. angew. Math.
Mech. T71. (In the press.)

Rand, R. H. & Armbruster, D. 1987 Perturbation methods, bifurcation theory and computer algebra.
New York: Springer.

Shaw, S. W. & Holmes, P. J. 1983a A periodically forced impact oscillator with large dissipation.
ASME J. appl. Mech. 50, 849-857.

Shaw, S. W. & Holmes, P. 19835 A periodically forced piecewise linear oscillator. J. Sound Vib. 90,
129-144.

Shaw, S. W. & Holmes, P. 1983 ¢ Periodically forced linear oscillator with impacts: chaos and long-
period motions. Phys. Rev. Lett. 51, 623-626.

Thompson, J. M. T. & Stewart, H. B. 1986 Nonlinear dynamics and chaos. Chichester: Wiley.

Troger, H. & Steindl, A. 1991 Nonlinear stability and bifurcation theory. Wien: Springer.

Weidner, C. & Lechner, G. 1990 Klapper- und Rasselgeridusche in Fahrzeuggetrieben. Auto.-tech.
Z. 92, 320-326.

Yorke, J. & Li, T.-Y. 1975 Period three implies chaos. Am. Math. Monthly 82, 985-992.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

